બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.
$8$
$9$
$4$
$2$
જો $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ અને $16{x^2} + 25{y^2} = 400$, તો $ P{F_1} + P{F_2}$ = .. . . .
જો ઉપવલયના ગૌણ અક્ષની લંબાઈ એ નાભિઓ વચ્ચેના અંતરનું અડધું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.................... થાય.
જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$
$13x^2 - 18xy + 37y^2 + 2x + 14y - 2 = 0$ કયા પ્રકારનો શાંકવ દર્શાવશે ?
જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો ....